Fast Determination of Generation-Shedding in Transient Emergency State

Hong-Chan Chang, Member, IEEE Hong-Cheng Chen, Student Member, IEEE

Department of Electrical Engineering

National Taiwan Institute of Technology, Taipei, Taiwan, **ROC**

ABSTRACT

This paper is concerned with fast determination of generation-shedding in the transient emergency state of power system. A simple Procedure is first developed to calculate the critical partial energy of individual machine and the associated partial energy margin. The partial
energy function is then applied to the transient stability assessment of a power system subjected to a large disturbance. Following this assessment, an energy-based analytical sensitivity method is presented. The sensitivity of the partial energy margin at any instant to the change of generation level has been analytically derived in a closed form. It offers a one-shot calculation for quantitative estimation of generation that must be shed to maintain system stability. The proposed sensitivity technique and procedure are illustrated with the Taipower system with reasonably accurate results.

Keywords : generation-shedding, energy-based sensitivity

1. **INTRODUCTION**

Modern electric power systems have grown complexly large due to increasing interconnections, installation of large generating units, and extra high voltage tie-lines. In most *cases,* system disturbances such **as** loss of a major transmission line, load or generation component can perturb a power system from normal operating state into transient emergency state where the system may lose transient stability. There are many means which can be effectively implemented to complement system synchronizing forces during and/or after such severe system transient disturbances. In North America, generation-shedding has proved to be one of the most effective discrete supplementary control means for maintaining stability [10]. Therefore, the emphasis in this paper is placed on fast determining the amount of generation-shedding needed to ensure stability in transient emergency state.

Theoretical studies on transient stability aSSeSSment and stabilization by the direct method based on transient energy **function** (TEF) have been widely conducted [1-6]. Significant progress has been achieved, and
practical methods to assess and control transient stability are emerging.
Recent results have indicated that not all the transient energy contributes
to s sysiem separation does not depend on the total system energy, but rather on the transient energy of individual machines tending to apart from the res1 of the system **[7-91.** The stability of these severely disturbed machines is what determines the transient stability of the overall system. Hence, special emphasis is focused on energy transactions of the severely disturbed machines, instead of assessing stability from a system-wide viewpoint.

In 1989, Stanton et al. [9] generalized the Vittal's individual machine energy function [7] to propose a partial energy function (PEF), a multi-dimensional generalization of the well-known equal area criterion. The PEF was used to quantify the energy transaction of an unstable generato energy margin for a specific machine, which quantifies the energy causing machine unstable. The partial energy margin permits pursuing

92 SM 484-6 EC A paper recommended and approved
by the IEEE Energy Development and Power Generation
Committee of the IEEE Power Engineering Society for
presentation at the IEEE/PES 1992 Summer Meeting,
Seattle, WA, July 12

sensitivity analysis aspect. In this paper, a simple procedure for finding
the critical energy of individual machine and its associated partial energy margin are presented. The calculation of energy margin plays an important role in any energy-based transient stability assessment or transient enhancement. The sensitivity analysis naturally paves the way of local transient control for system operation. In the past, some attempts have been made to derive stability limits using the sensitivity of total system transient energy margin to change in power system parameters through either repetitive simulations [lo] or analytical formulations [ll]. However, since the behavior of the system-wide energy function is dominated by the behavior of the partial energy of the severely disturbed machines, the latter provides a more accurate quantitative measure for transient enhancement. Therefore, this paper aims to present a completely analytical partial energy margin sensitivity on the basis of the PEF method and the related partial energy margin. It allows one to compute the generation limit of a particular generator in one-shot manner, and hence help perform local generation-shedding or other transient control for improving the transient stability. Finally, extensive analyses are conducted on the Taipower system to evaluate the effectiveness of the proposed sensitivity method for the determination of generation-shedding in transient emergency state.

2. THE MATHEMATICAL FORMULATION

For the classical power system model of an n-generator power system, the equation of motion of the ith synchronous generator with respect to the center of inertia (COI) reference frame is described by

$$
M_{i} \tilde{\omega}_{i} = P_{i} - P_{ei} - \frac{M_{i}}{M_{T}} P_{COA} = f_{i}(\underline{\theta})
$$

\n
$$
\dot{\theta}_{i} = \tilde{\omega}_{i} \qquad i = 1, 2, ..., n
$$
 (1)

where

$$
P_{i} = P_{mi} - E_{i}^{2}G_{ii}
$$
\n
$$
P_{ei} = \sum_{j=1}^{n} [C_{ij} \sin \theta_{ij} + D_{ij} \cos \theta_{ij}]
$$
\n
$$
M_{T} = \sum_{i=1}^{n} M_{i}
$$
\n
$$
P_{COA} = \sum_{i=1}^{n} (P_{i} - P_{ei}) = \sum_{i=1}^{n} P_{i} - 2 \sum_{i=1}^{n-1} \sum_{j=1}^{n} D_{ij} \cos \theta_{ij}
$$
\n
$$
C_{ij} = E_{i}E_{j}B_{ij}, \qquad D_{ij} = E_{i}E_{j}G_{ij}, \qquad \theta_{ij} = \theta_{i} - \theta_{j}
$$

and, using the common terminology for generator i

- = constant voltage behind the direct-axis transient reactance
- E_i = constant voltage behind the G_{ii} = driving point conductance
- P_{mi} = mechanical power input
M_i = inertia constant
-
- $G_{ij}(B_{ij})$ = transfer conductance (susceptance) in the reduced admittance matrix
- $\tilde{\omega}_i$, θ_i = rotor speed and angle with respect to COI reference frame, respectively

In the above, the network of power system has been reduced to the generator internal buses. For the system governed by **Eq.** (l), the partial energy function is given by [9]

0885-8969/93\$03.00 *0* 1992 IEEE

$$
V_{i}(\tilde{\omega}_{i},\theta) = \frac{1}{2}M_{i}\tilde{\omega}_{i}^{2} - P_{i}(\theta_{i} - \theta_{i}^{s})
$$

\n
$$
- \sum_{j=1}^{n} \frac{\theta_{i} - \theta_{i}^{s}}{\theta_{ij} - \theta_{ij}^{s}} [C_{ij}(\cos \theta_{ij} - \cos \theta_{ij}^{s}) - D_{ij}(\sin \theta_{ij} - \sin \theta_{ij}^{s})]
$$

\n
$$
+ \frac{M_{i}}{M_{T}} [\sum_{k=1}^{n} P_{k}(\theta_{i} - \theta_{i}^{s}) - 2 \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \frac{\theta_{i} - \theta_{i}^{s}}{\theta_{kj} - \theta_{kj}^{s}} D_{kj}(\sin \theta_{kj} - \sin \theta_{kj}^{s})]
$$

\n(2)

The first term in the right-hand side of Eq. (2) is the kinetic energy of generator i relative to **COA** reference frame. The sum of the remaining terms is customarily considered **as** the potential energy **[la]. Thus** Eq. **(2)** *can* be compactly denoted **as**

$$
V_i = V_{\text{kei}} + V_{\text{pei}} \tag{3}
$$

Because of the path-dependence property, it is not possible to judge analytically the sign definiteness of V_i . However, it has always been conjectured that V_i is positive definite supported by simulations on actual large-scale power system [1-4]. Therefore, without further theoretical justification, the function can only be regarded as a numerical partial energy function.

3. CRITICAL PARTIAL ENERGY CALCULATION

At the instant of fault clearing, the faulted power system contains an excess energy that is injected into the system during the fault. To maintain system stability, the network must be able to absorb this energy, which is often referred to as the transient energy. Meanwhile, the partial energy V_i of each machine is also increased during the fault. It is responsible for causing a synchronous generator to swing away from
the rest of the system after fault clearing. For the synchronism of a the rest of the system after fault clearing. For the synchronism of a machine not to be lost, the machine must be capable of converting all the kinetic energy $V_{\rm kei}$ of V_i into the potential energy $V_{\rm pei}$.

The ability of a power system to absorb excess energy depends on its ability to convert that kinetic energy to potential energy. For a given system configuration, there is a maximum or critical amount of transient energy, called *ctiticalenergy,* that the network *can* absorb and convert to other forms of energy. Similarly, extending the above concepts to the partial energy V_i , there is a corresponding limit to how much fault energy a machine can absorb. This extreme of PEF is named the *cntical partial energy, denoted by V_{cri}. It can be found by computing the value of the PEF on the dynamic liberation point (DLP) with zero velocity of a specific set of severely disturbed machines.*

Definition : The DLP is defined **as** the point on the trajectory where the accelerating power drops to be zero, and beyond which the synchronizing force on the rotor promotes acceleration into instability[9].

The rotor angles of machines at the DLP will be denoted by $\mathbf{\underline{\theta}}^d$ throughout this paper. *At* the DLP, the zero power mismatch exists only for the severely disturbed machines, while the other generators are in random oscillations and violate the zero power mismatch condition. Therefore, in general, the DLP does not coincide with the unstable equilibrium point (u.e.p.) in the multimachine case. The DLP and the associated critical partial energy for the PEF have been previously defined. However, an accurate procedure to estimate the DLP has been ^I**acki** ng.

In this section, we propose a simple procedure to find the DLP for calculating the critical partial energy of a particular disturbance under consideration. The overall procedure is depicted in the flow chart of Fig. 1. This procedure mainly comprises the following five steps:

- **Step 1.** Compute the admittance matrices Y reduced to internal nodes for the fault-on and post-fault network configurations.
- **Step 2.** Compute the value $\underline{f}^{1}(\underline{\theta}) \cdot (\underline{\theta} \cdot \underline{\theta}^{s})$ along the fault-on trajectory.
	- Detecting the point $\underline{\theta}^*$ at which the value $\underline{f}^1(\underline{\theta})$. ($\underline{\theta}$ - $\underline{\theta}^*$) reversals the sign from negative to positive.

Fig. 1. **Flow** *chart* for calculating critical partial energy

- **Step 3.** Perform a gap-ranking process according to the angles at *8'.* All rotor angles of the machines at $\underline{\theta}^*$ are ranked, taking the largest first, and all the angle gaps are then calculated. Those machines above the largest angle gap are grouped into the severely disturbed cluster @.
- **Step 4.** Fix all the angles at $\underline{\theta}^*$ except for the θ_i , i= Φ , and then the $\underline{\theta}^d$ *can* be obtained by sdving

$$
P_{i} - P_{ei} - \frac{M_{i}}{M_{T}} P_{\text{COA}} = 0 \qquad \forall \ i \in \Phi
$$
 (4)

Step 5. The value of $V_{\text{pei}}(\underline{\theta}^d)$ is the critical partial energy of machine i in the set @.

In Step 2, we make use of the detecting criterion of PEBS

 $f'(\underline{\theta}).(\underline{\theta}\cdot\underline{\theta}^s)=0$ [1] along fault-on trajectory to find a point, say $\underline{\theta}^*$, which is the closest point to the controlling u.e.p. among points on the fault-on trajectory. Since the behavior of the total system energy is mainly dominated by the behavior of the partial energy of the severely disturbed machines, the similar characteristics of the potential energy boundary surface (PEES) method [**1,2,6]** of the system-wide energy function can be reasonably utilized in determining the critical partial energy. The angle $\underline{0}^*$ is very close to the DLP, which serves a good
initial guess for solving the true DLP using Eq. (4). In a large
interconnected system, the number of the machines tending to separate
from the re ranking process is performed to identify the severely disturbed machines, which **are** characterized by their advanced rotor angle at *8'.* If the machine started with an amount of partial energy less than this Critical partial energy, the machine rotor will swing back toward a new equilibrium position. In this case, the machine will be claimed first swing stable. In view of this, the partial energy margin for a specific machine i in the set @ can be defined as the difference between **Vai** and V_{cli} at the instant of fault clearing :

179

$$
\Delta V_{i} = V_{cri} - V_{eli}
$$
\n
$$
= -\frac{1}{2} M_{i} \tilde{\omega}_{i}^{c^{2}} - P_{i} (\theta_{i}^{d} - \theta_{i}^{c})
$$
\n
$$
- \sum_{j=1}^{n} \beta_{ij} [C_{ij} (\cos \theta_{ij}^{d} - \cos \theta_{ij}^{c}) - D_{ij} (\sin \theta_{ij}^{d} - \sin \theta_{ij}^{c})]
$$
\n
$$
+ \frac{M_{i}}{M_{T}} [\sum_{k=1}^{n} P_{k} (\theta_{i}^{d} - \theta_{i}^{c}) - 2 \sum_{k=1}^{n} \sum_{j=k+1}^{n} \beta_{ijk} D_{kj} (\sin \theta_{kj}^{d} - \sin \theta_{kj}^{c})]
$$
\n
$$
- \sin \theta_{kj}^{c})]
$$
\n(5)

where

 $\tilde{\omega}_i^c$, θ_i^c = rotor speed and angle at fault clearing with respect to COI reference frame, respectively

$$
\beta_{ij} = \frac{\theta_i^d - \theta_i^c}{\theta_{ij}^d - \theta_{ij}^c}
$$

$$
\beta_{ijk} = \frac{\theta_i^d - \theta_i^c}{\theta_{kj}^d - \theta_{kj}^c}
$$

Note that in *Eqs.* **(4)** and *(5),* all the parameters pertain to the post-fault configuration.

4. SENSITIVITY ANALYSIS

In simple notation, the partial energy margin ΔV_i in Eq. (5) can be expressed as a multivariable function

$$
\Delta V_{i} = \eta_{i}(\tilde{\omega}_{i}^{c}, \tilde{\theta}^{c}, \tilde{\theta}^{d}, E, P_{m})
$$
 (6)

To check whether there is a notable change in the relevant DLP with respect to the base case, where the system is unstable without generation-shedding, extensive analyses incorporating various kinds of temporary generation-shedding were performed. **No** appreciable difference is noticed regarding to the DLPs, and therefore the DLP is assumed unchanged after temporary generation-shedding in our studies $\overline{\partial P_{ml}}$, $\overline{\partial P_{ml}}$, $\overline{\partial P_{ml}}$, $\overline{\partial P_{ml}}$, $\overline{\partial P_{ml}}$ the change of generation power ΔP_{m} is given as

$$
S_{ip_{mi}} = \lim_{\Delta P_{mi} \to 0} \frac{\Delta \eta_i(\tilde{\omega}_i^c, \underline{\theta}^c, \underline{E}, \underline{P}_m)}{\Delta P_{mi}}
$$
\n
$$
= \frac{\partial \eta_i(\tilde{\omega}_i^c, \underline{\theta}^c, \underline{E}, \underline{P}_m)}{\partial P_{mi}}
$$
\n
$$
= \frac{\partial \eta_i(\tilde{\omega}_i^c, \underline{\theta}^c, \underline{E}, \underline{P}_m)}{\partial P_{mi}}
$$
\n
$$
(7)
$$
\n
$$
= \frac{\partial \eta_i(\tilde{\omega}_i^c, \underline{\theta}^c, \underline{E}, \underline{P}_m)}{\partial P_{mi}}
$$
\n
$$
= \frac{\partial \eta_i(\tilde{\omega}_i^c, \underline{\theta}^c, \underline{E}, \underline{P}_m)}{\partial P_{mi}}
$$
\n
$$
= \frac{\partial \eta_i(\tilde{\omega}_i^c, \underline{\theta}^c, \underline{E}, \underline{P}_m)}{\partial P_{mi}}
$$
\n
$$
= \frac{\partial \eta_i(\tilde{\omega}_i^c, \underline{\theta}^c, \underline{E}, \underline{P}_m)}{\partial P_{mi}}
$$
\n
$$
= \frac{\partial \eta_i(\tilde{\omega}_i^c, \underline{\theta}^c, \underline{E}, \underline{P}_m)}{\partial P_{mi}}
$$
\n
$$
= \frac{\partial \eta_i(\tilde{\omega}_i^c, \underline{\theta}^c, \underline{E}, \underline{P}_m)}{\partial P_{mi}}
$$

Applying the chain rule of differentiation, above equation can be explicitly expressed as

$$
S_{ip_{ml}} = -M_{i} \tilde{\omega}_{i}^{c} \frac{\partial \tilde{\omega}_{i}^{c}}{\partial P_{ml}} - P_{i}(-\frac{\partial \theta_{i}^{c}}{\partial P_{ml}}) - (\theta_{i}^{d} - \theta_{i}^{c})(\frac{\partial P_{ml}}{\partial P_{ml}} - 2E_{i}G_{ii} - \frac{\partial E_{i}}{\partial P_{mi}} - \frac{\partial E_{i}}{\partial P_{mi}} \frac{E_{j}}{j}P_{ij}E_{j}B_{ij}(\cos \theta_{ij}^{d} - \cos \theta_{ij}^{c})
$$

\n
$$
\frac{\partial E_{i}}{\partial P_{ml}} - \sum_{j=1}^{n} \beta_{ij} [(\cos \theta_{ij}^{d} - \cos \theta_{ij}^{c}) \frac{\partial C_{ij}}{\partial P_{ml}} - (\sin \theta_{ij}^{d} - \cos \theta_{ij}^{c}) \frac{\partial C_{ij}}{\partial P_{ml}} - (1 - \frac{\partial E_{i}}{M_{T}})G_{ij}(\sin \theta_{ij}^{d} - \sin \theta_{ij}^{c})]
$$

\n
$$
\frac{\partial B_{i}}{\partial P_{ml}} - (1 - \frac{2M_{i}}{M_{T}})G_{ij}(\sin \theta_{ij}^{d} - \sin \theta_{ij}^{c})]
$$

\n
$$
= \frac{\partial \theta_{i}^{c}}{\partial P_{ml}} - \sum_{j=1}^{n} \beta_{ij} [(\cos \theta_{ij}^{d} - \cos \theta_{ij}^{c}) - D_{ij}(\sin \theta_{ij}^{d} - \cos \theta_{ij}^{c}) - \frac{\partial \theta_{i}^{c}}{\partial P_{mi}} \frac{E_{j}}{j}P_{ij} [C_{ij} \sin \theta_{ij}^{c} + (1 - \frac{2M_{i}}{M_{T}})]
$$

\n
$$
= \frac{\partial \theta_{i}^{c}}{\partial P_{ml}} \sum_{j=1}^{n} \gamma_{ij} [C_{ij}(\cos \theta_{ij}^{d} - \cos \theta_{ij}^{c}) - (1 - \frac{2M_{i}}{M_{T}})D_{ij}(\sin \theta_{ij}^{d} - \cos \theta_{ij}^{c}) - (\cos \theta_{ij}^{d} - \cos \theta_{ij}^{c}) - (\cos \theta_{ij}^{d} - \cos \theta_{ij}^{c})]
$$

\n
$$
= \frac{\partial \theta_{i}^{c}}{\partial P_{ml
$$

Authorized licensed use limited to: Chin-Yi University of Technology. Downloaded on November 3, 2008 at 01:47 from IEEE Xplore. Restrictions apply.

$$
\sin \theta_{ij}^c \left[\left[\gamma_{ij} \left(\frac{\partial \theta_i^c}{\partial P_{mi}} - \frac{\partial \theta_j^c}{\partial P_{mi}} \right) \right] + \frac{M_i}{M_T} \sum_{k=1}^n \left[P_k \left(-\frac{\partial \theta_i^c}{\partial P_{mi}} \right) \right] \right]
$$
\n
$$
+ \frac{M_i}{M_T} \left(\theta_i^d - \theta_i^c \right) \sum_{k=1}^n \left(\frac{\partial P_{mi}}{\partial P_{mi}} - 2E_K G_{kk} \frac{\partial E_k}{\partial P_{mi}} \right)
$$
\n
$$
- \frac{2M_i}{M_T} \sum_{k=1}^{n-1} \sum_{j=k+1}^n \left[\beta_{ijk} \left(\sin \theta_{kj}^d - \sin \theta_{kj}^c \right) \frac{\partial D_{kj}}{\partial P_{mi}} \right]
$$
\n
$$
- \frac{2M_i}{M_T} \sum_{k=1}^{n-1} \sum_{j=k+1}^n \left[\beta_{ijk} D_{kj} \left(-\cos \theta_{kj}^c \right) \left(\frac{\partial \theta_k^c}{\partial P_{mi}} - \frac{\partial \theta_j^c}{\partial P_{mi}} \right) \right]
$$
\n
$$
- \frac{2M_i}{M_T} \sum_{k=1}^{n-1} \sum_{j=k+1}^n \left\{ D_{kj} \left(\sin \theta_{kj}^d - \sin \theta_{kj}^c \right) \left[\gamma_{ijk}^a \frac{\partial \theta_i^c}{\partial P_{mi}} \right] + \gamma_{ijk}^b \left(\frac{\partial \theta_k^c}{\partial P_{mi}} - \frac{\partial \theta_j^c}{\partial P_{mi}} \right) \right] \right\}
$$
\n(8)

where

$$
\gamma_{ij} = \frac{\theta_j^q - \theta_j^c}{(\theta_{ij}^d - \theta_{ij}^c)^2}
$$
\n
$$
\gamma_{ijk}^a = \frac{1}{\theta_{jk}^d - \theta_{jk}^c}
$$
\n
$$
\gamma_{ijk}^b = \frac{\theta_i^d - \theta_j^c}{(\theta_{jk}^d - \theta_{jk}^c)^2}
$$
\n
$$
\frac{\partial C_{ij}}{\partial P_{mi}} = E_j B_{ij} \frac{\partial E_j}{\partial P_{mi}} + E_j B_{ij} \frac{\partial E_j}{\partial P_{mi}}
$$
\n
$$
\frac{\partial D_{ij}}{\partial P_{mi}} = E_j G_{ij} \frac{\partial E_j}{\partial P_{mi}} + E_j G_{ij} \frac{\partial E_j}{\partial P_{mi}}
$$

respect to the base case, where the system is unstable without Before calculating the sensitivity of partial energy margin by Eq. (8), respect to the base case, where the system is unstable without serveral partial derivat several partial derivatives need to be determined, including

$$
\frac{\partial P_{\text{ml}}}{\partial P_{\text{ml}}} = E_j^{\text{U}} \mathbf{ij} \frac{\partial P_{\text{ml}}}{\partial P_{\text{ml}}} + E_j^{\text{U}} \mathbf{ij} \frac{\partial P_{\text{ml}}}{\partial P_{\text{ml}}}
$$

re calculating the sensitivity of partial energy ma
al partial derivatives need to be determined, including

$$
\frac{\partial \tilde{\omega}_i^c}{\partial P_{\text{ml}}} \frac{\partial \theta_i^c}{\partial P_{\text{ml}}} \frac{\partial E_j}{\partial P_{\text{ml}}} \frac{\partial P_{\text{ml}}}{\partial P_{\text{ml}}} \qquad i = 1, 2, ..., n
$$

The analytical determination of these partial derivatives has been previously derived in reference [11] by the authors. Results for these
derivations are not included due to lack of space. Substituting these
results into Eq. (8) and after some sophisticated algebraic manipulation,
the sen a **closed form** derivations are not included due to lack of space. Sults
results into Eq. (8) and after some sophisticated algebra
he sensitivity of the partial energy margin with respect to
generation power, in general a severely distur

$$
\frac{\partial P_{\text{ml}}}{\partial P_{\text{ml}}}
$$
\n
$$
= M_{i} \tilde{\omega}_{i}^{c} \frac{\partial \tilde{\omega}_{i}}{\partial P_{\text{ml}}}
$$
\n
$$
= M_{i} \tilde{\omega}_{i}^{c} \frac{\partial \tilde{\omega}_{i}}{\partial P_{\text{ml}}}
$$
\n
$$
= M_{i} \tilde{\omega}_{i}^{c} \frac{\partial \tilde{\omega}_{i}}{\partial P_{\text{ml}}}
$$
\n
$$
= M_{i} \tilde{\omega}_{i}^{c} \frac{\partial \tilde{\omega}_{i}}{\partial P_{\text{ml}}}
$$
\n
$$
= M_{i} \tilde{\omega}_{i}^{c} \frac{\partial \tilde{\omega}_{i}}{\partial P_{\text{ml}}}
$$
\n
$$
= P_{i} \left(-\frac{\partial \theta_{i}^{c}}{\partial P_{\text{ml}}}\right) - (\theta_{i}^{d} - \theta_{i}^{c}) \left(\frac{\partial P_{\text{ml}}}{\partial P_{\text{ml}}}\right) = 2E_{i}G_{ii}
$$
\n
$$
= \frac{\partial E_{i}}{\partial P_{\text{ml}}}\sum_{j=1}^{n} \beta_{ij} E_{j} B_{ij} (\cos \theta_{ij}^{d} - \cos \theta_{ij}^{c})
$$
\n
$$
\frac{\partial E_{i}}{\partial P_{\text{ml}}}
$$
\n
$$
= (1 - \frac{M_{i}}{M_{T}}) (\theta_{i}^{d} - \theta_{i}^{c}) (1 - 2E_{i}G_{ii} \frac{\partial E_{i}}{\partial P_{\text{ml}}})
$$
\n
$$
= \frac{\partial E_{i}}{\partial P_{\text{ml}}}\sum_{j=1}^{n} \beta_{ij} E_{j} B_{ij} (\cos \theta_{ij}^{d} - \cos \theta_{ij}^{c})
$$
\n
$$
= (1 - \frac{2M_{i}}{M_{T}})G_{ij} (\sin \theta_{ij}^{d} - \sin \theta_{ij}^{c})]
$$
\n
$$
= \frac{\partial \theta_{i}^{c}}{\partial P_{\text{ml}}}\sum_{j=1}^{j-1} \beta_{ij} [C_{ij} \cos \theta_{ij}^{d} - \cos \theta_{ij}^{c}] - D_{ij} (\sin \theta_{ij}^{d} - \cos \theta_{ij}^{c}) - D_{ij} (\sin
$$

$$
D_{ij}(\sin \theta_{ij}^d - \sin \theta_{ij}^c)]
$$
 (9)

where $P_T = \sum_{i=1}^{n} P_i$

n

Particularly interesting in Eq. (9) is that the sensitivity takes on a completely analytical algebraic form in terms of the system parameters. This equation is then readily possible to evaluate S_{ipmi} and ΔP_{mi} , which

is necessary to obtain a small change $\Delta \eta$ i of η . These in turn allow one to compute power generation limits and generation-shedding in transient emergency state. To help explain this, the overall procedure is depicted in Fig. 2. In Fig. **2,** the generation shed is timed to start at a short time after fault occurring, say Δt_b . The time Δt_b is assumed 5 cycles in our studies to complete the control procedure, including fault detection, telecommunication time, computation time for estimating the amount of generation shed **[lo].** The amount of generation needed to be shed is fast calculated by the analytical sensitivity method to make the partial energy margin $\Delta V_i \geq 0$. This generation-shedding is held constant during the first foreswing, and is removed at the very inception of backswing.

Fig. **2. Flow** chart for computing the amount of generation-shedding

5. SIMULATION RESULTS AND DISCUSSION

5.1 Simulation conditions

The proposed procedure and the derived sensitivity method were tested on the Taipower system, a realistic medium-sized system in Taiwan. This system is of longitudinal structure and comprises **34** generators, **191** buses, and **234** lines. A comprehensive series of analyses are performed on the Taipower system with different faulted conditions. The system is disturbed by a three-phase short-circuit 181

(3Q.X) fault. It occurred at either generator buses (labelled GB), which is cleared without line switching, or load buses (labelled LB) x of a transmission line x^* -y, which is cleared by opening the line at both terminals. Results obtained by the proposed procedure are compared
with those obtained by using the conventional step-by-step integration method (labelled **SBS).**

5.2 Accuracy assessments

Table I summarizes the results obtained by the one-shot sensitivity method for the unstable **cases.** In such *cases,* generation is shed **from** the severely disturbed machines to make the system stable. The clearing time for eaci fault *case* was set *0.05 seconds* lagging the critical clearing time *so* **as** to get unstable *case.* With the setting of clearing times, the partial energy margins (ΔV_i) of severely disturbed machines calculated in Table I **are** all negative, which indicates that these machines **are** unstable. In the **7th** column of Table I shows the estimated amounts of generationshedding ΔP_{mi} . The associated generation limits P_{mi} are also included in the **8th** column. Corresponding to the amount of generation-shedding, the critical clearing time, Tact, **are** calculated by using the **SBS** method **as** the benchmark. The accuracy is **then** assessed by comparing the clearing times T_{cl} with the critical clearing times T_{cct}. The differences T_{cl}-T_{cct} are listed in the **10th** column. It merits attention that the proposed method yields fairly accurate results of generation-shedding for these faults. Moreover, for almost all **cases** the method yields conservative results of the amount of generation-shedding. It indicates that the proposed sensitivity method predicts the generation-shedding requirements with a reasonable margin on the safe side of operation.

Table **I1** deals specifically with the *cases* where the fault occurred at LB, which is cleared by tripping a transmission line and hence the post-
fault configuration is different from the original one. The values of
partial energy margin, sensitivity, generation-shedding, generation limit,
and severely disturbed situation. Numerical results in Tables I and **I1** verify this conjecture. Moreover, the results in Table I1 show that the more severe the disturbance to the machines, the larger the sensitivities. It is reasonable because the severely disturbed machine provides greater effects on the partial energy margin. From Tables I and **11,** it is should be noted that the sensitivity coefficients **Sipmi** are quit accurate for both **GB's** and **LB's.**

Fig. 3(a) and Fig. 3(b) show the representative rotor angles (partial
list) regarding the faulted cases $3*-7$ with and without generation-
shedding, respectively. The clearing time is set 0.36 seconds. In such a fault case, there **are** totally **10** severely disturbed machines, which can be easily identified by their advanced rotor angles at $\mathbf{\theta}^*$ as cited in Section **3. As** evidenced in Fig. **3@),** the unstable generators are regained stable operation after shedding the amount of generation calculated by the **propased** method.

In [Table 111,](#page-5-0) another series of analyses concerning with the exploration of the dependance between the accuracy and the clearing time are carried out. A typical case with a fault occurred at GB **160*** is considered. Its initial critical clearing time and power generation are 0.29 seconds and 900MW, respectively. The values of sensitivity and generation pwer limits at various clearing times are listed. The results show that the closer the clearing time to the critical clearing time, the more **accurate the** results. This is evident due to the nonlinear feature of the transient stability margin against clearing time. The relationship between the transient stability margin and clearing time is sketched in **fig. 4. Note** that the curve is near linear in the vicinity of CCT. It again verifies the effectiveness of using only the linear sensitivity coefficients.

6. CONCLUSIONS

A fast one-shot sensitivity method has been proposed for determining the required amount of generation-shedding in transient emergency state. Its primary attraction lies in that the method succeeds in providing purely analytical forms for expressing sensitivity coefficients.
A simple procedure has also been developed to find the relevant DLP for calculating **the critical** partial energy. Preliminary results of **the** study performed on the Taipower system with different fault conditions are found to be reasonably accurate. All these contributions *can* greatly help operators make corrective control in transient emergency state of power system.

$\overline{}$ - Faulted Bus		T_{cl}	Critical			$\overline{\Delta P_{mi}}$	P_{mil}	T_{cct}	$T_{\rm cl}$ - $T_{\rm cct}$
				ΔV.	$\mathbf{S}_{i}\mathbf{P}_{\mathbf{m}i}$			[SBS]	
NO.	Type	(sec)	Machine			(MW)	(MW)	(sec)	(\sec)
159*	GB	0.27	G2	-6.064	-3.910	155.10	414.9	0.26	$+0.01$
$160*$	GВ	0.34	G3	-6.974	-4.201	164.46	735.5	0.34	Ω
161*	GB	0.34	G4	-8.335	-3.867	215.56	700.4	0.35	-0.01
$162*$	GB	0.29	G5	-1.769	-5.069	34.9	34.1	0.29	σ
163*	GB	0.29	G6	-2.057	-4.676	44.00	85.0	0.29	᠊ᢐ
<u>त्यम</u>	GB	0.34	G7	-2.418	-3.805	41.65	138.4	0.34	π
165 *	GB	0.34	G8	-2.992	-6.030	49.61	204.4	0.34	σ
166*	GB	0.42	G9	-3.812	-7.216	52.83	230.2	0.42	σ
$167*$	GВ	0.36	G10	-4.778	-5.794	82.47	311.5	0.35	$+0.01$
$168*$	GВ	0.37	G11	-5.463	-5.543	98.55	288.5	0.38	-0.01
169*	GB	0.37	G12	-5.593	-5.520	101.33	288.8	0.38	-0.01
170*	GB	0.58	G13	-0.684	-12.093	5.65	32.4	0.58	0
171*	GB	0.95	G14	-0.793	-16.917	4.69	55.3	0.96	-0.01
172*	GB	0.53	G15	-1.156	.268 -11	10.26	36.7	0.53	0
$173*$	GБ	0.29	G16	-1.267	-5.076	24.96	55.1	0.29	Ō
$174*$	GB	0.70	G17	-0.865	-15.006	5.76	42.2	0.71	-0.01
175*	GB	0.25	$G18$.	-0.960	-4.547	21 12	21.9	0.26	-0.01
176*	GB	0.26	G19	-1.959	-4.962	39.48	ਨਨ ਤ	0.26	σ
$177*$	GB	0.99	G20	-1.499	-13.767	10.89	137.1	1.01	-0.02
$178*$	GB	0.45	G21	-3.373	-9.064	37.21	132.8	0.45	O
179*	GB	0.34	G22	-4.592	-6.766	67.87	187.1	0.34	Ω
180*	GB	0.46	G23	-3.236	-9.354	34.60	129.4	0.45	$+0.01$
$181*$	GB	0.19	G24	-0.784	-2.506	31.28	52.7	0.19	σ
182*	GB	0.57	G25	-4.778	-7.819	61.11	366.9	0.58	-0.01
183*	GB	0.34	G26	-3.206	-5.964	33.76	200.2	0.34	o
184*	GB	0.34	G27	-4.298	-6.023	71.36	195.6	0.34	π
185*	GВ	0.36	G28	-3.831	-5.522	69.37	264.6	0.35	$+0.01$
186*	GВ	0.37	G29	-2.629	-5 7 25	45.93	264.1	0.37	σ
187*	GB	0.34	G30	-4.102	-5.207	78.78	325.2	0.34	᠊ᠯ
$188*$	GB	0.31	G31	-4.905	-4.437	110.60	349.5	0.32	-0.01
189*	GB	0.36	G32	-10.208	-4.883	209.06	600.9	0.37	-0.01
190*	GB	0.40	G33	-1.144	-8.320	13.75	56.3	0.40	Ō
$191*$	GB	0.30	G34	-1.973	-5.184	38.06	81.9	0.29	+0.01

Table I. Sensitivity accuracy assessment **and** generation power limits for fault occurred at generator **buses**

Table 11. Sensitivity accuracy assessment **and** generation power limits **for** fault **occurred** at load buses

* - Faulted Bus		$\mathrm{T_{cl}}$	Critical			$\overline{\Delta P_{mi}}$	P_{mil}	$\rm T_{cct}$	$T_{\rm cl}$ - $T_{\rm cct}$
			Machine	ΔV_i	$S_i P_{mi}$			[SBS]	
NO.	Type	(\sec)	(in order)			(MW)	(MW)	(sec)	(\sec)
			G2	-2.248	-2.376	94.61	475.4		
			G4	-2.794	-1.518	184.05	732.0		
			G3	-2.583	-1.437	179.78	720.2		
			G6	-0.154	-1.050	14.66	114.3		
$3* - 7$	LB	0.36	G10	-0.680	-0.996	68.25	325.7	0.38	-0.02
			G12	-0.661	-0.966	68.36	321.6		
			G11	-0.649	-0.944	68.84	318.2		
			G1	-0.640	-0.933	68.64	315.6		
			G5	-0.074	-0.857	8.69	60.3		
			G7	-0.271	-0.617	43.90	136.1		
$22 - 23$	IΒ	0.39	G31	-3.890	-3.889	100.04	360.0	0.41	-0.02
			G32	-4.921	-3.599	136.73	733.3		
			G2	-1.019	-1.881	54.19	515.8		
			G6	-0.157	-1.536	10.20	118.8		
			G4	-1.690	-1.108	152.59	763.4		
			G3	-1.667	-1.072	155.54	744.5		
$30* - 26$	LB	0.40	G10	-0.573	-1.163	49.27	344.7	0.42	-0.02
			G12	-0.572	-1.146	49.90	340.1		
			G11	-0.576	-1.110	51.90	335.1		
			G1	-0.572	-1.103	31.82	332.4		
			G5	-0.067	-1.006	6.68	62.3		
			G7	-0.330	-1.045	31.56	148.4		
$54 - 17$	$\, {\bf B}$	0.40	G31	-3.154	-3.564	88.49	371.5	0.41	-0.01
			G32	-3.105	-3.591	86.47	783.5		

Authorized licensed use limited to: Chin-Yi University of Technology. Downloaded on November 3, 2008 at 01:47 from IEEE Xplore. Restrictions apply.

Fig. **3.** Representative rotor angle responses for **the** Taipower system faulted at LB $3*-7$, T_c ₁=0.36 seconds. (a) without generationshedding; (b) with generation-shedding.

Fig. 4. Variation of partial energy margin for various clearing times (fault at GB 160^{*})

7. ACKNOWLEDGEMENT

The research was supported in part by the National Science Council of the Republic of China, under Grant No. NSC80-0404-EOll-02.

REFERENCES

- [11 T. Athay, V.R. Sherkey, R. Podmore, **S.** Virmani, and C. Puech, "Transient Energy stability Analysis," Cod. on System Engineering for Power : Emergence Operation State Control-Section **IV,** Davos, Switzerland, 1979, **also** U.S. Dept. of Energy Publication No. CONF-790904-PI, 1980.
- [21 N. Kakimoto, Y. Ohsawa, and M. Hayashi, "Transient Stability Analysis of Electric Power System Via Lure-Type Lyapunov Function," Part I and **II,** Trans. of IEE of Japan, Vol. PAS-98, pp. 63-79, May/June 1987.
- [3] M. Ribbens-Pavella and F.J. Evans, "Direct Method for Study Dynamic of Large-scale Electric Power System - A Survey,
- Automatica, Vol-32, pp. 1-21, Jan. 1985.

[4] A.A. Fouad, V. Vittal,, S. Rajagopal, V.F. Carvalho, M.V. E1-
Kady, C.K. Tang, J.V. Mitsche, and M.V. Pereira, "Direct Transient Stability Analysis Using Energy Functions Application to
Large Power Networks," IEEE Trans. on Power System, Vol
- PWRS-2, pp. 37-44, Feb. 1987.

[5] H.D. Chiang, F.F. Wu and P.P. Varaiya, "Foundation of Direct

Methods for Power System Transient Stability Analysis," IEEE

Trans. on Circuits and Systems, Vol. CAS-34. pp. 160-173, Feb.
- 1987. [61 H.D. Chiang, F.F. Wu and P.P. Varaiya, "Foundation of PEBS Methods for Power System Transient Stability Analysis ," IEEE
Trans. on Circuits and Systems, Vol. CAS-35. pp. 712-718, June 1988.
- [7) A. N. Michel, A. A. Fouad, and V. Vittal, "Power System Transient Stability Using Individual Machine Energy Functions," IEEE Trans. on Circuits and Systems, Vol. CAS-30, No. *5,* pp. 266-276, May
- 1983. [81 **S.** E. Stanton, "Transient Control for Electric Power Systems Our Newest Innovation," Proc. of the IEEE Region V Conference, Ulsa, OK., 1987.
- [91 **S.** E. Stanton, and W. P. Dykas, "Analysis of a Local Transient
- Control Action by Partial Energy Functions," IEEE Trans. on
Power Systems, Vol. PWRS-4, No. 3, pp. 996-1002, Aug. 1989.
[10] A. A. Fouad, A. Ghafurian, K. Nodehi, and Y. Mansour, "
Calculation of Generation-Shedding Requir Hydro System Using Transient Energy Functions," IEEE Trans. on Power Systems, Vol. PWRS-1, No. 2, pp. 17-23, May 1986.
- [ll] H. C. Chen, and H. C. Chang, "An Energy-Based Sensitivity Method for Fast Transient Control," Submitted to the IEE Proceedings. Part C.

BIOGRAPHY

Hong-Chan Chang was born in Taipei, Taiwan on March *5,* 1959. He received his B.S ., M.S., and Ph.D. degrees all in Electrical Engineering from National Cheng Kung University in 1981, 1983, and 1987, respectively. In August of 1987, he joined National Taiwan Institute of Technology as a faculty member where he is presently an associate professor of the Electrical Engineering Department. His major **areas** of research include power system stability and neural network applications to power system.

Hong-Cheng Chen was born in Taiwan on March 1, 1965. He received his M.S.degree in electrical engineering from National Taiwan Institute of Technology, Taipei, in 1989. He is currently working toward his Ph.D. degree in the Electxical Engineering Department **at** National Taiwan Institute of Technology, Taipei. His area of interest is on the transient stability of power system, and system dynamics.